族谱网 头条 人物百科

方块矩阵

2017-10-16
出处:族谱网
作者:阿族小谱
浏览:838
转发:0
评论:0
方块矩阵的等价命题线性代数中,下列关于方块矩阵A的命题是等价的(同时成立,或同时不成立):A可逆;A的反矩阵存在。det(A)≠0.rank(A)=n.Null(A)=0.A的特征值中没有0。对任意b属于F,Ax=b有唯一解。Ax=0只有平凡解。AA可逆。A与单位矩阵行(列)等价。A的行向量或列向量张成F.A的零空间只有零向量。A的值域为F.A的行(列)向量构成F(F)中向量的线性无关集。这里,F为矩阵元素所属的域。通常,这个域为实数域或复数域。

方块矩阵的等价命题

线性代数中,下列关于方块矩阵A的命题是等价的(同时成立,或同时不成立):

A可逆;A的反矩阵存在。

det(A)≠ 0.

rank(A)= n.

Null(A) = 0.

A的特征值中没有0。

对任意b属于F,Ax = b有唯一解。

Ax = 0只有平凡解。

AA可逆。

A与单位矩阵行(列)等价。

A的行向量或列向量张成F.

A的零空间只有零向量。

A的值域为F.

A的行(列)向量构成F (F)中向量的线性无关集。

这里,F为矩阵元素所属的域。通常,这个域为实数域或复数域。


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

文章来源:内容词条
——— 没有了 ———
编辑:阿族小谱

更多文章

更多精彩文章
评论 {{commentTotal}} 文明上网理性发言,请遵守《新闻评论服务协议》
游客
发表评论
  • {{item.userName}} 举报

    {{item.content}}

    {{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}

    回复评论
加载更多评论
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信

推荐阅读

· 矩阵
发展作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,已经出现过以矩阵形式表示线性方程组系数以解方程的图例,可算作是矩阵的雏形。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。阿瑟·凯莱被认为是矩阵论的奠基人进入十九世纪后,行列式的研究进一步发展,矩阵的概念也应运而生。奥古斯丁·路易·柯西是最早将行列式排成方阵并将其元素用双重下标表示的数学家。他还在1829年就在行列式的框架中证明了实对称矩阵特征根为实数的结论。其后,詹姆斯·约瑟夫·西尔维斯特注意到,在作为行列式的计算形式以外,将数...
· 变换矩阵
应用任意线性变换都可以用矩阵表示为易于计算的一致形式,并且多个变换也可以很容易地通过矩阵的相乘连接在一起。线性变换不是唯一可以用矩阵表示的变换。R维的仿射变换与透视投影都可以用齐次坐标表示为RP维(即n+1维的真实投影空间)的线性变换。因此,在三维计算机图形学中大量使用着4x4的矩阵变换。寻找变换矩阵如果已经有一个函数型的线性变换T(x){\displaystyleT(x)},那么通过T对标准基每个向量进行简单变换,然后将结果插入矩阵的列中,这样很容易就可以确定变换矩阵A,即例如,函数T(x)=5x{\displaystyleT(x)=5x}是线性变换,通过上面的过程得到(假设n=2)在二维图形中的应用示例最为常用的几何变换都是线性变换,这包括旋转、缩放、切变、反射以及正投影。在二维空间中,线性变换可以用2×2的变换矩阵表示。旋转绕原点逆时针旋转θ度角的变换公式是x′=xcos⁡⁡-->θ...
· 对角矩阵
例子(a000b000c),(100020000),(1007),(2){\displaystyle{\begin{pmatrix}a&0&0\\0&b&0\\0&0&c\end{pmatrix}},{\begin{pmatrix}1&0&0\\0&2&0\\0&0&0\end{pmatrix}},{\begin{pmatrix}1&0\\0&7\end{pmatrix}},{\begin{pmatrix}2\end{pmatrix}}}均为对角矩阵矩阵运算[a1a2⋱⋱-->an]+[b1b2⋱⋱-->bn]=[a1+b1a2+b2⋱⋱-->an+bn]{\displaystyle{\begin{bmatrix}a_{1}&&&\\&a...
· 矩阵群
基本例子在一个交换环R上n×n矩阵集合MR(n,n)在矩阵加法与乘法下自身是一个环。MR(n,n)的单位群称为在环R上n×n矩阵的一般线性群,记作GLn(R)或GL(n,R)。所有矩阵群是某个一般线性群的子群。典型群某些特别有趣的矩阵群是所谓的典型群。当矩阵群的系数环是实数,这些群是典型李群。当底环是一个有限域,典型群是李型群。这些群在有限单群分类中起着重要的作用。有限群作为矩阵群任何有限群同构于某个矩阵群。这类似于凯莱定理说每个有限群同构于某个置换群。因为同构性质是传递的,我们只需考虑怎样从一个置换群构造一个矩阵群。令G是在n点(Ω={1,2,…,n})上的置换群,设{g1,...,gk}是G的一个生成集合。复数上n×n矩阵的一般线性群GLn(C)自然作用在向量空间C上。设B={b1,…,bn}是C的标准基。对每个gi令Mi属于GLn(C)是将每个bj...
· 对称矩阵
例子(abcbdecef),(130316061),(1557),(2){\displaystyle{\begin{pmatrix}a&b&c\\b&d&e\\c&e&f\end{pmatrix}},{\begin{pmatrix}1&3&0\\3&1&6\\0&6&1\end{pmatrix}},{\begin{pmatrix}1&5\\5&7\end{pmatrix}},{\begin{pmatrix}2\end{pmatrix}}}特性对于任何方形矩阵X{\displaystyleX},X+XT{\displaystyleX+X^{T}}是对称矩阵。A{\displaystyleA}为方形矩阵是A{\displaystyleA}为对称矩阵的必要条件。对角矩阵都是对称矩阵。两...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信