更多文章
更多精彩文章
齐次坐标
使用齐次坐标经常是更加有用的,因为3次元的平移(仿射变换)不能用3×3矩阵完成。要按一个向量v = (vx, vy, vz)缩放一个物体,所有的齐次向量p = (px, py, pz, 1)都需要乘以缩放矩阵:
如下所示,这个乘法给出预期的结果:
缩放是均匀的,当且仅当缩放因子是相等的。如果除了一个因子之外所有缩放因子都是1,我们得到方向缩放。
因为齐次坐标的最后成员可以看作其他三个成员的分母,使用公共因子s的缩放可以使用如下缩放矩阵完成:
对于每个齐次向量p = (px, py, pz, 1),我们有:
它将均质于
参见
三维计算机图形软件
3D打印
三维扫描仪
建筑信息模型
多边形网格
多边形造型
缩放
SIGGRAPH
犹他茶壶
体素
边界表示
参考文献
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
{{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}