更多文章
更多精彩文章
随机性
密码学领域的随机性一般分为:
统计学伪随机性:随机比特序列匹配在统计学的随机的定义。匹配该定义的比特序列的特点是,序列中“1”的数量约等于“0”的数量;同理,“01”、“00”、“10”、“11”的数量大致相同,以此类推。匹配该类别的随机数生成方法的例子有线性同余伪随机数生成器。
密码学安全伪随机性:除了满足统计学伪随机性外,还需满足“不能通过给定的随机序列的一部分而以显著大于12{\displaystyle {\frac {1}{2}}}的概率在多项式时间内演算出比特序列的任何其他部分”。匹配该类别的密码学安全伪随机数生成器的例子如Trivium (算法)中的CSPRNG部分、SHA-2家族函数和计数器亦可被绑定以构建类似强度的CSPRNG。
真随机性:除满足以上两点,还需要具备“不可重现性”。换言之,不能通过给定同样的数据而多次演算出同一串比特序列。由于计算机算法均具备确定的特性,所以真随机数无法由算法来生成。真随机数的例子有放射性物质在某一时间点的衰变速度、某一地区的本底辐射值、正确使用设计良好的骰子所获得的输出等。
相关条目
随机数
伪随机数生成器(英语:Pseudorandom number generator)
可忽略函数,帮助理解“非显著大于1/2”这一概念。
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
{{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}